Virtual Lab: Half-Life

Background Information:

The rate of decay of a radioactive isotope of an element is measured in terms of its half-life. When a radioactive isotope decays, the decayed atoms form a daughter product. The half-life of a radioactive element is the time it takes for half of its atoms to decay into the daughter product. After two half-lives, one-fourth of the original isotope's atoms remain, and three-fourths have turned in the daughter product. After many more half-lives, a very small amount of the original parent isotope remains, almost all of it has decayed into the daughter product.

Each radioactive isotope has its own characteristic half-life. For instance, the naturally occurring radioactive isotope of uranium (U-238) decays into thorium-234 with a half-life of 4.5 billion years. This means that half of the original amount of uranium-238 still remains after this time. In contrast, some radioactive isotopes decay quickly. For instance, polonium-214 has a half-life of 0.00016 seconds!

Journal Questions:

Answer using complete sentences in your notebook

- 1. Define Isotope.
- 2. What do you think "Half-life" means?
- 3. What does "decay" mean?
- 4. When an isotope decays, does it disappear?
- 5. How much of a sample of Uranium-238 do you think would still be present after 9 billion years?

Objectives:

In this virtual lab you will:

- Investigate the meaning of radioactive half-life
- Simulate the radioactive decay of four hypothetical isotopes
- Collect data to be used to determine, compare, and contrast half-lives of these elements

Procedure:

- 1. Click the "Video" button. Watch the video. In your notebook write down a paragraph summary.
- 2. Select "Element A" from the pulldown menu. Using the controls, record the number of remaining radioactive atoms for each time period until no more remain on your data table.
- 3. Repeat Step 2 for Element B through Element D.
- 4. Create a graph showing the decay of all four elements.
- 5. Answer the follow-up questions in your notebook using complete sentences.
- 6. Glue your data table and graph into your notebook.

Follow-Up Questions:

- 1. According to your data, what are the approximate half-lives of each element?
 - a. Element A:
 - b. Element B:
 - c. Element C:
 - d. Element D:
- 2. What happens to a radioactive isotope as it decays? Does it disappear?
- 3. After three half-lives of an isotope, 1 billion (one-eighth) of the original isotope's atoms still remain in a certain amount of this element. How many atoms of the daughter product would you expect to be present?
- 4. Why would scientists look at the decay rate of different elements?
- 5. How does radioactive decay help support the age of the Earth?

Data Table:

Years	Remaining Radioactive Atoms									
	Element A	Element B	Element C	Element D						
0										
1,000										
2,000										
3,000										
4,000										
5,000										
6,000										
7,000										
8,000										
9,000										
10,000										
11,000										
12,000										
13,000										
14,000										
15,000										
16,000										
17,000										
18,000										
19,000										
20,000										

1 10 M	× 10 1	 12 70			9) - 10j	- 3	<u></u> г 3	8	8 B		-	6 - 20	
								Ì					
												1	
						1							
					1 1			1	Î			1 0	
					<u> </u>						-		
5-28-5-	32	3-18-	-9		228			6	94 - 1 8	-	-	218	
					22 33		6 - 3					2 22	
			-	-	<u>2 - 2</u>		-	2	<u>8</u>		1		
9-39	3°	32		·	as 39		ç		ei a		2	12	
<u>e 6 - e -</u>		5 - 50			5 <u>7</u> —53			ę	31				
										_			
<u></u>	1 6 13 1 9	6 X			8- X		0 - 1 2		8 - 8				-
	12 - 24 - 54	3 2	-		2-33			-	97 - 38	_		28	
	30 - 01 - 0	- 23		2	22 - 33		8		a a			2 20	
	<u>.</u>		-		8-33	- 3	<u> </u>	ç	<u> - 18</u>		-		_
											-		
											_		
											_		
]					
					11				Î				
					Î								
5-18-5	32 - 34 - 3				2 - 28 	3	i	Ì	97 - 48		-	2	